首頁 > 我們的産品 > 電化學研究測試儀器 – 電化學工作站 > PARSTAT 4000A 電化學工作站

PARSTAT 4000A 電化學工作站

産品概述:

PARSTAT 4000A 電化學工作站是一款擁有48V高槽壓滿足高溶液電阻的測試系統,10MHz高頻可覆蓋溶液至固態材料測量;標配4A 電流滿足材料及大容量儲能器件測試; 高電流解析度實現微電極及感測器測量; 具有專業的能源測試模組。

  • 産品介紹
  • 儀器配置
  • 應用
  • 資料
  • 宣傳視頻

PARSTAT 4000A電化學工作站是在PARSTAT4000電化學工作站上升級研發的新一款“優先順序”(Reference Grade)電化學工作站。它集“普林斯頓應用研究”50餘年品牌歷史和專業製造DC電化學測量儀器,“輸力強應用研究”60年AC阻抗測試儀器研發及製造的的經驗研發製造,是集合兩個世界頂尖品牌的研發製造技術而生產的*新一款高階研究級電化學工作站系統。

PARSTAT 4000A電化學工作站可以完美應用於以下研究領域,研究電化學,腐蝕和塗層,電池/電容器,燃料電池/太陽能電池,感測器,生物醫學應用和奈米科技。提供更高的測試速度,多功能性和精度,新的PARSTAT 4000A電化學工作站是一個建立在客戶應用建議基礎上研發設計的完美例子。

  • +/- 48V高槽壓
  • +/- 4A標配大電流輸出(*大可擴充套件至+/- 20A)
  • 40pA*小電流量程,解析度達1.2fA
  • 10uHz ~ 10MHz阻抗測試
  • 1uS高速取樣,儀器內建4M快取,以防資料丟失
  • 小電流選件,可達80fA*小量程,2.5aA*小電流解析度
  • 帶有標準接地浮置功能
功率放大器
輸出電壓 ±48V
輸出電流 ±4A (標配)
±20A (選配)
電位控制 (恆電位模式)
施加電位範圍 ±10V(+/-48V可擴充套件)
電流控制 (恆電流模式)
施加電流範圍 ±4A (標配), ±20A (選配)
電位測量
電位測量範圍 ±10V  ( +/-100V,可透過增壓器選件擴充套件)
阻抗模組 (EIS) 選件
模式 電位控制/電流控制
掃描方式 線性 or 對數
iR 補償
正反饋
動態 iR 補償
介面 (標配)
數字輸入/數字輸出 5 TTL logic 輸出, 2 TTL logic 輸入
計算機 / 軟體
通訊介面 USB模式
作業系統 Windows XP, or Windows  7, 8, 10
PC 配置 (至少需求) Core i 5  / 4GB memory 高資料採集需要大記憶體
軟體 VersaStudio/ VersaStudio Developers Kit(VDK)
常規
電壓 750VA Max. Voltage range 90Vac to 250Vac, 50-60Hz
尺寸(長X寬X高) 515 x 490 x 195mm
重量 50lbs, 23kgs
使用環境溫度 10°C to 50°C
溼度 Maximum 80% non-condensing
理想溫度 25°C
Dummy Cell 模擬電解池 內建 (DC only)
CE 認證 透過
20A 電流放大器選項 型號
±20A 大電流選項,支援化學電池、燃料電池及電鍍應用,在電流放大及通常操作模式之間轉換,僅需簡單的電纜連線。 20A/ PARSTAT4000
小電流選件
即插即用,小電流選項 VersaSTAT LC
高階輔助輸入介面Advanced Auxiliary Interface
此 AAI 選項,允許附加一個帶有4個A/D轉換輸入介面,使得Versastudio software 透過VersaSTAT主機獲得更多記錄資料。 AAI/PARSTAT4000
電化學池選件
Corrosion Cell Kit 腐蝕電解池 K0047
Corrosion Flat Cell 平板電解池 K0235
Micro-Cell Kit 微電解池 K0264
Analytical Cell Kit 分析電解池 RDE0018
Tait Cell 塗層評價池 K0307
輔助附件
石英晶體微天平 QCM922
旋轉盤電極 616
旋轉環盤電極 636
 

全功能電化學綜合測試VersaStudio 軟體

 

完全的Studio軟體支援PARSTAT4000電化學工作站,包括20A電流放大裝置及小電流選件。各種系統綜合性的軟硬體完美結合,使Studio可以致力於各個領域中的研究,並且透過不同的預算不斷升級。

軟體提供全面、廣泛的電化學測試方法,它不但功能強大,而且便於新手學習使用。

 

開路電位 方波伏安 控制電位阻抗
線性掃描 差分脈衝伏安 控制電流阻抗
迴圈伏安 (單次) 常規脈衝伏安 Loop迴圈實驗
迴圈伏安 (多次迴圈) 反相常規脈衝伏安 延時功能
階梯線性掃描 零阻計(電化學噪聲) 資訊提示功能
階梯迴圈伏安 (單次) 電偶腐蝕 開路電位測試功能
階梯迴圈伏安 (多次) 迴圈極化 輔助輸入介面
計時電流 線性極化 外部應用觸發
計時電位 Tafel塔菲爾曲線 DAC 輸出控制
計時電量 恆電位 電極表面預處理
快速電位脈衝 動電位 預沉積
快速電量脈衝 恆電流 系統平衡
週期電位脈衝 動電流 系統淨化
週期電量脈衝 動態 iR iR補償測量
 

產品介紹

 

PARSTAT 4000 Brochure

PARSTAT Brochure (P3000 & P4000+)

 

應用資料

 
Basics of Voltammetry and Polarography

Fundamentals of Stripping Voltammetry

Square Wave Voltammetry

A Review of Techniques for Electrochemical Analysis

Basics of Corrosion Measurements

Electrochemistry and Corrosion Overview and Techniques
 

操作指南

 
Differences in Cyclic Voltammetry and Staircase Cyclic Voltammetry in VersaStudio

Performing Stripping Voltammetry With a VersaSTAT and VersaStudio Software

Connecting a Potentiostat to an External Resistor

 

 

20A 電流放大器選項 型號
±20A 大電流選項,支援化學電池、燃料電池及電鍍應用,在電流放大及通常操作模式之間轉換,僅需簡單的電纜連線。 20A/ PARSTAT4000
小電流選件
即插即用,小電流選項,電流量程為80fA,解析度達2.5aA VersaSTAT LC
輔助輸入介面Advanced Auxiliary Interface
此 AAI 選項,允許附加一個帶有4個A/D轉換輸入介面,使得Versastudio software 透過VersaSTAT主機獲得更多記錄資料。 AAI/PARSTAT4000
電化學池選件
Corrosion Cell Kit 腐蝕電解池 K0047
Corrosion Flat Cell 平板電解池 K0235
Micro-Cell Kit 微電解池 K0264
Analytical Cell Kit 分析電解池 RDE0018
Tait Cell 塗層評價池 K0307
輔助附件
石英晶體微天平 QCM922
旋轉盤電極 616
旋轉環盤電極 636

 

腐蝕

1) Jae-Won Park, Chul-Ku Lee, Mechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 13 (2012) 2209-2214 , Seoul National University of Science and Technology, Seoul

 http://link.springer.com/article/10.1007/s12541-012-0293-y#page-1

2) G. Bolat, D. Mareci, Investigation of the electrochemical behavior of TiMo alloys in simulated physiological solutions, Electrochimica Acta, 113 (2013) 470-480, University of La Laguna, Spain

http://www.sciencedirect.com/science/article/pii/S0013468613018793

3) A.Kazek-Kęsik, G.Dercz, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Archives of Civil and Mechanical Engineering, Silesian University of Technology, Poland

 http://www.sciencedirect.com/science/article/pii/S1644966513001404

4) A. C. Bărbînţă, D. Mareci, The estimation of corrosion behavior of new TiNbTaZr alloys for biomedical applications, Materials and Corrosion, The “Gheorghe Asachi” Technical University of Iasi, Iasi, (Romania)

http://onlinelibrary.wiley.com/doi/10.1002/maco.201307294/abstract;jsessionid=D2352F625DD21AB4B03C23CAC01C8AF7.f03t03?deniedAccessCustomisedMessage=&userIsAuthenticated=false

5) L. A. Dragan-Raileanu, R. Chelariu, Electrochemical behavior of new experimental TiNbZrAl      alloys for dental applications, Materials and Corrosion,Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, Romania

http://onlinelibrary.wiley.com/doi/10.1002/maco.201307126/abstractdeniedAccessCustomisedMessage=&userIsAuthenticated=false

6) Georgiana Bolata, Javier Izquierdo, Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation, Electrochimica Acta, 102 (2013) 432-439, Faculty of Chemical Engineering and Environmental Protection, Romania

http://www.sciencedirect.com/science/article/pii/S0013468613010165

7) Jae-Won Park, Chul-Ku LeeMechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 14 (2014) 1939-1945, Seoul National University of Science and Technology, Seoul

http://link.springer.com/article/10.1007/s12541-013-0263-z#page-1

8) Hassan H. Elsentriecy, Huimin Luo, Effects of pretreatment and process temperature of a conversion coating produced by an aprotic ammonium-phosphate ionic liquid on magnesium corrosion protection, Electrochimica Acta, 123(2014) 58-63, Oak Ridge National Laboratory, USA

http://www.sciencedirect.com/science/article/pii/S001346861400019X

9) L. Guan, B. Zhang, The reliability of electrochemical noise and current transients characterizing metastable pitting of Al–Mg–Si microelectrodes, Corrosion Science, 80 (2014)1–6, Institute of Metal Research, Chinese Academy of Sciences, China

http://www.sciencedirect.com/science/article/pii/S0010938X13004903

10) Yaya Li,   Zhenzhen Yang, Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings , Journal of Materials Chemistry A, University of Shanghai for Science and Technology, China

http://pubs.rsc.org/en/content/articlelanding/ 2014/ta/c4ta02262a#!divAbstract

儲能

11) Ting-Feng Yi, Bin Chen, Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery, Journal of Power Sources,  247(2014)778–785, Anhui University of Technology, Maanshan, People's Republic of China

 http://www.sciencedirect.com/science/article/pii/S0378775313015231

12) Li Zhao, Wenbo Yue, Synthesis of graphene-encapsulated mesoporous In2O3 with different particle size for high-performance lithium storage,Electrochimica Acta, 116 (2014) 31–38, Beijing Normal University, Beijing 100875, P. R. China

http://www.sciencedirect.com/science/article/pii/S0013468613021919

13) Wenbo Yue,  Shuhua Jiang, Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries, Journal of Materials Chemistry A, 1 (2013) 6928- 6933Beijing Normal University, Beijing 100875, P. R. China

http://pubs.rsc.org/en/content/articlelanding/2013/ta/c3ta11012e#!divAbstract

14) Wenbo Yue, Shanshan Tao, Carbon-coated graphene–Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries, Carbon, 65 (2013) 97–104, Beijing Normal University, Beijing 100875, P. R. China

http://www.sciencedirect.com/science/article/pii/S0008622313007653

15) Sheng Yang, Xiaojing Yang, Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Advanced Functional Materials, 23 (2013) 3570-3576, Beijing Normal University, Beijing 100875, P. R. China

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201203286/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false

16) Xinghua Guo, Keqin Du, Application of a composite electrolyte in a solid-acid fuel cell system: A micro-arc oxidation alumina support filled with CsH2PO4, International Journal of Hydrogen Energy, 36 (2013) 16387–16393, Institute of Metal Research, Chinese Academy of Science, Shenyang, China

http://www.sciencedirect.com/science/article/pii/S0360319913023756

17) Zhengfu Tong, Zhenghua Su, In situ prepared Cu2ZnSnS4 ultrathin film counter electrode in dye-sensitized solar cells, Materials Letters,121 (2014) 241–243, Central South University, Changsha 410083, China

http://www.sciencedirect.com/science/article/pii/S0167577X14001529

18) York R. Smith, Biplab Sarma, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting, International Journal of Hydrogen Energy, 38 (2013) 2062–2069, University of Utah, USA

http://www.sciencedirect.com/science/article/pii/S0360319912024913

19) Yao Xiao, Qing Lv, Preparation of Pt hollow nanotubes with adjustable diameters for methanol electro-oxidation, RSC Advances., 2014,4, 21176-21179, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China

http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra02568g#!divAbstract

奈米材料

20) Ting-Feng Yi, Shuang-Yuan Yang, Effect of temperature on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4-positive-electrode material, Ionics, 20 (2014) 309-314, Anhui University of Technology, PRC

http://link.springer.com/article/10.1007/s11581-013-0975-1#page-1

21) Maciej Sowa, Alicja Kazek-Kęsik, Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 ( 2013) 627–636, Silesian University of Technology, Poland

http://www.sciencedirect.com/science/article/pii/S0013468613020021

22) York R. Smith, Biplab Sarma, Light-Assisted Anodized TiO2 Nanotube Arrays, ACS Appl. Mater. Interfaces, 11 (2012) 5883–5890, University of Utah, USA

http://pubs.acs.org/doi/abs/10.1021/am301527g

23) Wojciech Simkaa, , , Maciej Sowa, Anodic oxidation of zirconium in silicate solutions

,Electrochimica Acta, 104(2013)518-525, Silesian University of Technology, Poland

http://www.sciencedirect.com/science/article/pii/S0013468612017446

24) Zhaolin Chen, Hongtao Zhang, mbrane on the electrosorption performance of activated                  carbon based electrodes modules, Desalination and Water Treatment, 51 (2013) 16-18,                  Tsinghua University, Beijing

      http://www.tandfonline.com/doi/abs/10.1080/19443994.2012.749373

25) Venkata N.MadhiraPeng Ren, Synthesis and electronic properties of a pentafluoroethyl -            derivatized nickel pincer complex, Dalton Trans., 41(2012)7915-7919, University of Hawaii,             USA

       http://pubs.rsc.org/en/content/articlelanding/2012/dt/c2dt30131h#!divAbstract

26) Maciej Sowa, Alicja Kazek-Kęsik, Modification of niobium surfaces using plasma electrolytic          oxidation in silicate solutions, Journal of Solid State Electrochemistry, Silesian University of            Technology, Poland
      http://link.springer.com/article/10.1007/s10008-013-2341-7#page-1




上壹個:ModuLab XM ECS

下壹個:PARSTAT 3000A電化學工作站


台灣地區

聯繫地址: 新竹辦事處 新竹市公道五路二段120號10樓之5

聯繫電話: +886-3-575-0099 ext 208

上海演示中心

聯繫地址:上海外高橋富特東三路526號1幢二層

聯繫電話:021-58685111-AMT SI,4008353166轉1,amt.si.china@ametek.com

北京維修中心

聯繫地址:北京市朝陽區酒仙橋路10號京東方大廈二層西側

聯繫電話:010-85262111-12,186 0067 3523,amt.si.china@ametek.com

投訴電話

聯繫地址:北京市朝陽區酒仙橋路10號京東方大廈二層西側

聯繫電話:010-85262111-15,138 1746 0237

銷售熱線:
+886-3-575-0099 ext 208

郵箱:
info.taiwan@ametek.com