銷售熱線:
+886-3-575-0099 ext 208
PARSTAT 4000A電化學工作站是在PARSTAT4000電化學工作站上升級研發的新一款“優先順序”(Reference Grade)電化學工作站。它集“普林斯頓應用研究”50餘年品牌歷史和專業製造DC電化學測量儀器,“輸力強應用研究”60年AC阻抗測試儀器研發及製造的的經驗研發製造,是集合兩個世界頂尖品牌的研發製造技術而生產的*新一款高階研究級電化學工作站系統。 PARSTAT 4000A電化學工作站可以完美應用於以下研究領域,研究電化學,腐蝕和塗層,電池/電容器,燃料電池/太陽能電池,感測器,生物醫學應用和奈米科技。提供更高的測試速度,多功能性和精度,新的PARSTAT 4000A電化學工作站是一個建立在客戶應用建議基礎上研發設計的完美例子。
|
|
|
全功能電化學綜合測試VersaStudio 軟體
完全的Studio軟體支援PARSTAT4000電化學工作站,包括20A電流放大裝置及小電流選件。各種系統綜合性的軟硬體完美結合,使Studio可以致力於各個領域中的研究,並且透過不同的預算不斷升級。 軟體提供全面、廣泛的電化學測試方法,它不但功能強大,而且便於新手學習使用。
|
|
腐蝕
1) Jae-Won Park, Chul-Ku Lee, Mechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 13 (2012) 2209-2214 , Seoul National University of Science and Technology, Seoul
http://link.springer.com/article/10.1007/s12541-012-0293-y#page-1
2) G. Bolat, D. Mareci, Investigation of the electrochemical behavior of TiMo alloys in simulated physiological solutions, Electrochimica Acta, 113 (2013) 470-480, University of La Laguna, Spain
http://www.sciencedirect.com/science/article/pii/S0013468613018793
3) A.Kazek-Kęsik, G.Dercz, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Archives of Civil and Mechanical Engineering, Silesian University of Technology, Poland
http://www.sciencedirect.com/science/article/pii/S1644966513001404
4) A. C. Bărbînţă, D. Mareci, The estimation of corrosion behavior of new TiNbTaZr alloys for biomedical applications, Materials and Corrosion, The “Gheorghe Asachi” Technical University of Iasi, Iasi, (Romania)
5) L. A. Dragan-Raileanu, R. Chelariu, Electrochemical behavior of new experimental TiNbZrAl alloys for dental applications, Materials and Corrosion,Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, Romania
6) Georgiana Bolata, Javier Izquierdo, Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation, Electrochimica Acta, 102 (2013) 432-439, Faculty of Chemical Engineering and Environmental Protection, Romania
http://www.sciencedirect.com/science/article/pii/S0013468613010165
7) Jae-Won Park, Chul-Ku LeeMechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 14 (2014) 1939-1945, Seoul National University of Science and Technology, Seoul
http://link.springer.com/article/10.1007/s12541-013-0263-z#page-1
8) Hassan H. Elsentriecy, Huimin Luo, Effects of pretreatment and process temperature of a conversion coating produced by an aprotic ammonium-phosphate ionic liquid on magnesium corrosion protection, Electrochimica Acta, 123(2014) 58-63, Oak Ridge National Laboratory, USA
http://www.sciencedirect.com/science/article/pii/S001346861400019X
9) L. Guan, B. Zhang, The reliability of electrochemical noise and current transients characterizing metastable pitting of Al–Mg–Si microelectrodes, Corrosion Science, 80 (2014)1–6, Institute of Metal Research, Chinese Academy of Sciences, China
http://www.sciencedirect.com/science/article/pii/S0010938X13004903
10) Yaya Li, Zhenzhen Yang, Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings , Journal of Materials Chemistry A, University of Shanghai for Science and Technology, China
http://pubs.rsc.org/en/content/articlelanding/ 2014/ta/c4ta02262a#!divAbstract
儲能
11) Ting-Feng Yi, Bin Chen, Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery, Journal of Power Sources, 247(2014)778–785, Anhui University of Technology, Maanshan, People's Republic of China
http://www.sciencedirect.com/science/article/pii/S0378775313015231
12) Li Zhao, Wenbo Yue, Synthesis of graphene-encapsulated mesoporous In2O3 with different particle size for high-performance lithium storage,Electrochimica Acta, 116 (2014) 31–38, Beijing Normal University, Beijing 100875, P. R. China
http://www.sciencedirect.com/science/article/pii/S0013468613021919
13) Wenbo Yue, Shuhua Jiang, Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries, Journal of Materials Chemistry A, 1 (2013) 6928- 6933Beijing Normal University, Beijing 100875, P. R. China
http://pubs.rsc.org/en/content/articlelanding/2013/ta/c3ta11012e#!divAbstract
14) Wenbo Yue, Shanshan Tao, Carbon-coated graphene–Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries, Carbon, 65 (2013) 97–104, Beijing Normal University, Beijing 100875, P. R. China
http://www.sciencedirect.com/science/article/pii/S0008622313007653
15) Sheng Yang, Xiaojing Yang, Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Advanced Functional Materials, 23 (2013) 3570-3576, Beijing Normal University, Beijing 100875, P. R. China
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201203286/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false
16) Xinghua Guo, Keqin Du, Application of a composite electrolyte in a solid-acid fuel cell system: A micro-arc oxidation alumina support filled with CsH2PO4, International Journal of Hydrogen Energy, 36 (2013) 16387–16393, Institute of Metal Research, Chinese Academy of Science, Shenyang, China
http://www.sciencedirect.com/science/article/pii/S0360319913023756
17) Zhengfu Tong, Zhenghua Su, In situ prepared Cu2ZnSnS4 ultrathin film counter electrode in dye-sensitized solar cells, Materials Letters,121 (2014) 241–243, Central South University, Changsha 410083, China
http://www.sciencedirect.com/science/article/pii/S0167577X14001529
18) York R. Smith, Biplab Sarma, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting, International Journal of Hydrogen Energy, 38 (2013) 2062–2069, University of Utah, USA
http://www.sciencedirect.com/science/article/pii/S0360319912024913
19) Yao Xiao, Qing Lv, Preparation of Pt hollow nanotubes with adjustable diameters for methanol electro-oxidation, RSC Advances., 2014,4, 21176-21179, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra02568g#!divAbstract
奈米材料
20) Ting-Feng Yi, Shuang-Yuan Yang, Effect of temperature on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4-positive-electrode material, Ionics, 20 (2014) 309-314, Anhui University of Technology, PRC
http://link.springer.com/article/10.1007/s11581-013-0975-1#page-1
21) Maciej Sowa, Alicja Kazek-Kęsik, Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 ( 2013) 627–636, Silesian University of Technology, Poland
http://www.sciencedirect.com/science/article/pii/S0013468613020021
22) York R. Smith, Biplab Sarma, Light-Assisted Anodized TiO2 Nanotube Arrays, ACS Appl. Mater. Interfaces, 11 (2012) 5883–5890, University of Utah, USA
http://pubs.acs.org/doi/abs/10.1021/am301527g
23) Wojciech Simkaa, , , Maciej Sowa, Anodic oxidation of zirconium in silicate solutions
,Electrochimica Acta, 104(2013)518-525, Silesian University of Technology, Poland
http://www.sciencedirect.com/science/article/pii/S0013468612017446
24) Zhaolin Chen, Hongtao Zhang, mbrane on the electrosorption performance of activated carbon based electrodes modules, Desalination and Water Treatment, 51 (2013) 16-18, Tsinghua University, Beijing
http://www.tandfonline.com/doi/abs/10.1080/19443994.2012.749373
25) Venkata N.Madhira, Peng Ren, Synthesis and electronic properties of a pentafluoroethyl - derivatized nickel pincer complex, Dalton Trans., 41(2012)7915-7919, University of Hawaii, USA
http://pubs.rsc.org/en/content/articlelanding/2012/dt/c2dt30131h#!divAbstract
26) Maciej Sowa, Alicja Kazek-Kęsik, Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions, Journal of Solid State Electrochemistry, Silesian University of Technology, Poland
http://link.springer.com/article/10.1007/s10008-013-2341-7#page-1
如何診斷普林斯頓VersaSTAT 及PARSTAT電化學工作站?
時間:2019-11-22上壹個:ModuLab XM ECS
台灣地區
聯繫地址: 新竹辦事處 新竹市公道五路二段120號10樓之5
聯繫電話: +886-3-575-0099 ext 208
上海演示中心
聯繫地址:上海外高橋富特東三路526號1幢二層
聯繫電話:021-58685111-AMT SI,4008353166轉1,amt.si.china@ametek.com
北京維修中心
聯繫地址:北京市朝陽區酒仙橋路10號京東方大廈二層西側
聯繫電話:010-85262111-12,186 0067 3523,amt.si.china@ametek.com
投訴電話
聯繫地址:北京市朝陽區酒仙橋路10號京東方大廈二層西側
聯繫電話:010-85262111-15,138 1746 0237