销售热线:
400 8353 166 -1
PARSTAT 4000A电化学工作站是在PARSTAT4000电化学工作站上升级研发的新一款“优先级”(Reference Grade)电化学工作站。它集“普林斯顿应用研究”50余年品牌历史和专业制造DC电化学测量仪器,“输力强应用研究”60年AC阻抗测试仪器研发及制造的的经验研发制造,是集合两个世界顶尖品牌的研发制造技术而生产的*新一款高端研究级电化学工作站系统。 PARSTAT 4000A电化学工作站可以完美应用于以下研究领域,研究电化学,腐蚀和涂层,电池/电容器,燃料电池/太阳能电池,传感器,生物医学应用和纳米科技。提供更高的测试速度,多功能性和精度,新的PARSTAT 4000A电化学工作站是一个建立在客户应用建议基础上研发设计的完美例子。
|
|
|
全功能电化学综合测试VersaStudio 软件
完全的Studio软件支持PARSTAT4000电化学工作站,包括20A电流放大设备及小电流选件。各种系统综合性的软硬件完美结合,使Studio可以致力于各个领域中的研究,并且通过不同的预算不断升级。 软件提供全面、广泛的电化学测试方法,它不但功能强大,而且便于新手学习使用。
|
|
腐蚀
1) Jae-Won Park, Chul-Ku Lee, Mechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 13 (2012) 2209-2214 , Seoul National University of Science and Technology, Seoul
http://link.springer.com/article/10.1007/s12541-012-0293-y#page-1
2) G. Bolat, D. Mareci, Investigation of the electrochemical behavior of TiMo alloys in simulated physiological solutions, Electrochimica Acta, 113 (2013) 470-480, University of La Laguna, Spain
http://www.sciencedirect.com/science/article/pii/S0013468613018793
3) A.Kazek-Kęsik, G.Dercz, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Archives of Civil and Mechanical Engineering, Silesian University of Technology, Poland
http://www.sciencedirect.com/science/article/pii/S1644966513001404
4) A. C. Bărbînţă, D. Mareci, The estimation of corrosion behavior of new TiNbTaZr alloys for biomedical applications, Materials and Corrosion, The “Gheorghe Asachi” Technical University of Iasi, Iasi, (Romania)
5) L. A. Dragan-Raileanu, R. Chelariu, Electrochemical behavior of new experimental TiNbZrAl alloys for dental applications, Materials and Corrosion,Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, Romania
6) Georgiana Bolata, Javier Izquierdo, Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation, Electrochimica Acta, 102 (2013) 432-439, Faculty of Chemical Engineering and Environmental Protection, Romania
http://www.sciencedirect.com/science/article/pii/S0013468613010165
7) Jae-Won Park, Chul-Ku LeeMechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 14 (2014) 1939-1945, Seoul National University of Science and Technology, Seoul
http://link.springer.com/article/10.1007/s12541-013-0263-z#page-1
8) Hassan H. Elsentriecy, Huimin Luo, Effects of pretreatment and process temperature of a conversion coating produced by an aprotic ammonium-phosphate ionic liquid on magnesium corrosion protection, Electrochimica Acta, 123(2014) 58-63, Oak Ridge National Laboratory, USA
http://www.sciencedirect.com/science/article/pii/S001346861400019X
9) L. Guan, B. Zhang, The reliability of electrochemical noise and current transients characterizing metastable pitting of Al–Mg–Si microelectrodes, Corrosion Science, 80 (2014)1–6, Institute of Metal Research, Chinese Academy of Sciences, China
http://www.sciencedirect.com/science/article/pii/S0010938X13004903
10) Yaya Li, Zhenzhen Yang, Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings , Journal of Materials Chemistry A, University of Shanghai for Science and Technology, China
http://pubs.rsc.org/en/content/articlelanding/ 2014/ta/c4ta02262a#!divAbstract
储能
11) Ting-Feng Yi, Bin Chen, Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery, Journal of Power Sources, 247(2014)778–785, Anhui University of Technology, Maanshan, People's Republic of China
http://www.sciencedirect.com/science/article/pii/S0378775313015231
12) Li Zhao, Wenbo Yue, Synthesis of graphene-encapsulated mesoporous In2O3 with different particle size for high-performance lithium storage,Electrochimica Acta, 116 (2014) 31–38, Beijing Normal University, Beijing 100875, P. R. China
http://www.sciencedirect.com/science/article/pii/S0013468613021919
13) Wenbo Yue, Shuhua Jiang, Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries, Journal of Materials Chemistry A, 1 (2013) 6928- 6933Beijing Normal University, Beijing 100875, P. R. China
http://pubs.rsc.org/en/content/articlelanding/2013/ta/c3ta11012e#!divAbstract
14) Wenbo Yue, Shanshan Tao, Carbon-coated graphene–Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries, Carbon, 65 (2013) 97–104, Beijing Normal University, Beijing 100875, P. R. China
http://www.sciencedirect.com/science/article/pii/S0008622313007653
15) Sheng Yang, Xiaojing Yang, Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Advanced Functional Materials, 23 (2013) 3570-3576, Beijing Normal University, Beijing 100875, P. R. China
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201203286/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false
16) Xinghua Guo, Keqin Du, Application of a composite electrolyte in a solid-acid fuel cell system: A micro-arc oxidation alumina support filled with CsH2PO4, International Journal of Hydrogen Energy, 36 (2013) 16387–16393, Institute of Metal Research, Chinese Academy of Science, Shenyang, China
http://www.sciencedirect.com/science/article/pii/S0360319913023756
17) Zhengfu Tong, Zhenghua Su, In situ prepared Cu2ZnSnS4 ultrathin film counter electrode in dye-sensitized solar cells, Materials Letters,121 (2014) 241–243, Central South University, Changsha 410083, China
http://www.sciencedirect.com/science/article/pii/S0167577X14001529
18) York R. Smith, Biplab Sarma, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting, International Journal of Hydrogen Energy, 38 (2013) 2062–2069, University of Utah, USA
http://www.sciencedirect.com/science/article/pii/S0360319912024913
19) Yao Xiao, Qing Lv, Preparation of Pt hollow nanotubes with adjustable diameters for methanol electro-oxidation, RSC Advances., 2014,4, 21176-21179, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra02568g#!divAbstract
纳米材料
20) Ting-Feng Yi, Shuang-Yuan Yang, Effect of temperature on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4-positive-electrode material, Ionics, 20 (2014) 309-314, Anhui University of Technology, PRC
http://link.springer.com/article/10.1007/s11581-013-0975-1#page-1
21) Maciej Sowa, Alicja Kazek-Kęsik, Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 ( 2013) 627–636, Silesian University of Technology, Poland
http://www.sciencedirect.com/science/article/pii/S0013468613020021
22) York R. Smith, Biplab Sarma, Light-Assisted Anodized TiO2 Nanotube Arrays, ACS Appl. Mater. Interfaces, 11 (2012) 5883–5890, University of Utah, USA
http://pubs.acs.org/doi/abs/10.1021/am301527g
23) Wojciech Simkaa, , , Maciej Sowa, Anodic oxidation of zirconium in silicate solutions
,Electrochimica Acta, 104(2013)518-525, Silesian University of Technology, Poland
http://www.sciencedirect.com/science/article/pii/S0013468612017446
24) Zhaolin Chen, Hongtao Zhang, mbrane on the electrosorption performance of activated carbon based electrodes modules, Desalination and Water Treatment, 51 (2013) 16-18, Tsinghua University, Beijing
http://www.tandfonline.com/doi/abs/10.1080/19443994.2012.749373
25) Venkata N.Madhira, Peng Ren, Synthesis and electronic properties of a pentafluoroethyl - derivatized nickel pincer complex, Dalton Trans., 41(2012)7915-7919, University of Hawaii, USA
http://pubs.rsc.org/en/content/articlelanding/2012/dt/c2dt30131h#!divAbstract
26) Maciej Sowa, Alicja Kazek-Kęsik, Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions, Journal of Solid State Electrochemistry, Silesian University of Technology, Poland
http://link.springer.com/article/10.1007/s10008-013-2341-7#page-1
如何诊断普林斯顿VersaSTAT 及PARSTAT电化学工作站?
时间:2019-11-22上一个:ModuLab XM ECS
华东地区(上海总部)
联系地址:上海外高桥富特东三路526号1幢二层
联系电话:021-58685111-AMT SI,4008353166转1
华北地区(北京)
联系地址:北京市朝阳区酒仙桥路10号京东方大厦二层西侧
联系电话:010-85262111-15, 4008353166转1
西北西南地区(成都)
联系地址:成都市锦悦西路160号高新孵化园9号楼F座10楼9-10号
联系电话:028-8675811-AMT SI,4008353166转1
华中华南地区(广州)
联系地址:广州市越秀区东风东路767号东宝大厦810室
联系电话:020-83634768-AMT SI,4008353166转1
北京维修中心
联系地址:北京市朝阳区酒仙桥路10号京东方大厦二层西侧
联系电话:010-85262111-12,186 0067 3523
投诉电话
联系地址:北京市朝阳区酒仙桥路10号京东方大厦二层西侧
联系电话:010-85262111-15,138 1746 0237