首页 > 我们的产品 > 电化学研究测试仪器 – 电化学工作站 > PARSTAT 4000A 电化学工作站

PARSTAT 4000A 电化学工作站

产品概述:

PARSTAT 4000A 电化学工作站是一款拥有48V高槽压满足高溶液电阻的测试系统,10MHz高频可覆盖溶液至固态材料测量;标配4A 电流满足材料及大容量储能器件测试; 高电流分辨率实现微电极及传感器测量; 具有专业的能源测试模块。

  • 产品介绍
  • 仪器配置
  • 应用
  • 资料
  • 宣传视频

PARSTAT 4000A电化学工作站是在PARSTAT4000电化学工作站上升级研发的新一款“优先级”(Reference Grade)电化学工作站。它集“普林斯顿应用研究”50余年品牌历史和专业制造DC电化学测量仪器,“输力强应用研究”60年AC阻抗测试仪器研发及制造的的经验研发制造,是集合两个世界顶尖品牌的研发制造技术而生产的*新一款高端研究级电化学工作站系统。

PARSTAT 4000A电化学工作站可以完美应用于以下研究领域,研究电化学,腐蚀和涂层,电池/电容器,燃料电池/太阳能电池,传感器,生物医学应用和纳米科技。提供更高的测试速度,多功能性和精度,新的PARSTAT 4000A电化学工作站是一个建立在客户应用建议基础上研发设计的完美例子。

  • +/- 48V高槽压
  • +/- 4A标配大电流输出(*大可扩展至+/- 20A)
  • 40pA*小电流量程,分辨率达1.2fA
  • 10uHz ~ 10MHz阻抗测试
  • 1uS高速采样,仪器内置4M缓存,以防数据丢失
  • 小电流选件,可达80fA*小量程,2.5aA*小电流分辨率
  • 带有标准接地浮置功能
功率放大器
输出电压 ±48V
输出电流 ±4A (标配)
±20A (选配)
电位控制 (恒电位模式)
施加电位范围 ±10V(+/-48V可扩展)
电流控制 (恒电流模式)
施加电流范围 ±4A (标配), ±20A (选配)
电位测量
电位测量范围 ±10V  ( +/-100V,可通过增压器选件扩展)
阻抗模块 (EIS) 选件
模式 电位控制/电流控制
扫描方式 线性 or 对数
iR 补偿
正反馈
动态 iR 补偿
接口 (标配)
数字输入/数字输出 5 TTL logic 输出, 2 TTL logic 输入
计算机 / 软件
通讯接口 USB模式
操作系统 Windows XP, or Windows  7, 8, 10
PC 配置 (至少需求) Core i 5  / 4GB memory 高数据采集需要大内存
软件 VersaStudio/ VersaStudio Developers Kit(VDK)
常规
电压 750VA Max. Voltage range 90Vac to 250Vac, 50-60Hz
尺寸(长X宽X高) 515 x 490 x 195mm
重量 50lbs, 23kgs
使用环境温度 10°C to 50°C
湿度 Maximum 80% non-condensing
理想温度 25°C
Dummy Cell 模拟电解池 内置 (DC only)
CE 认证 通过
20A 电流放大器选项 型号
±20A 大电流选项,支持化学电池、燃料电池及电镀应用,在电流放大及通常操作模式之间转换,仅需简单的电缆连接。 20A/ PARSTAT4000
小电流选件
即插即用,小电流选项 VersaSTAT LC
高级辅助输入接口Advanced Auxiliary Interface
此 AAI 选项,允许附加一个带有4个A/D转换输入接口,使得Versastudio software 通过VersaSTAT主机获得更多记录数据。 AAI/PARSTAT4000
电化学池选件
Corrosion Cell Kit 腐蚀电解池 K0047
Corrosion Flat Cell 平板电解池 K0235
Micro-Cell Kit 微电解池 K0264
Analytical Cell Kit 分析电解池 RDE0018
Tait Cell 涂层评价池 K0307
辅助附件
石英晶体微天平 QCM922
旋转盘电极 616
旋转环盘电极 636
 

全功能电化学综合测试VersaStudio 软件

 

完全的Studio软件支持PARSTAT4000电化学工作站,包括20A电流放大设备及小电流选件。各种系统综合性的软硬件完美结合,使Studio可以致力于各个领域中的研究,并且通过不同的预算不断升级。

软件提供全面、广泛的电化学测试方法,它不但功能强大,而且便于新手学习使用。

 

开路电位 方波伏安 控制电位阻抗
线性扫描 差分脉冲伏安 控制电流阻抗
循环伏安 (单次) 常规脉冲伏安 Loop循环实验
循环伏安 (多次循环) 反相常规脉冲伏安 延时功能
阶梯线性扫描 零阻计(电化学噪声) 信息提示功能
阶梯循环伏安 (单次) 电偶腐蚀 开路电位测试功能
阶梯循环伏安 (多次) 循环极化 辅助输入界面
计时电流 线性极化 外部应用触发
计时电位 Tafel塔菲尔曲线 DAC 输出控制
计时电量 恒电位 电极表面预处理
快速电位脉冲 动电位 预沉积
快速电量脉冲 恒电流 系统平衡
周期电位脉冲 动电流 系统净化
周期电量脉冲 动态 iR iR补偿测量
 

产品介绍

 

PARSTAT 4000 Brochure

PARSTAT Brochure (P3000 & P4000+)

 

应用资料

 
Basics of Voltammetry and Polarography

Fundamentals of Stripping Voltammetry

Square Wave Voltammetry

A Review of Techniques for Electrochemical Analysis

Basics of Corrosion Measurements

Electrochemistry and Corrosion Overview and Techniques
 

操作指南

 
Differences in Cyclic Voltammetry and Staircase Cyclic Voltammetry in VersaStudio

Performing Stripping Voltammetry With a VersaSTAT and VersaStudio Software

Connecting a Potentiostat to an External Resistor

 

 

20A 电流放大器选项 型号
±20A 大电流选项,支持化学电池、燃料电池及电镀应用,在电流放大及通常操作模式之间转换,仅需简单的电缆连接。 20A/ PARSTAT4000
小电流选件
即插即用,小电流选项,电流量程为80fA,分辨率达2.5aA VersaSTAT LC
辅助输入接口Advanced Auxiliary Interface
此 AAI 选项,允许附加一个带有4个A/D转换输入接口,使得Versastudio software 通过VersaSTAT主机获得更多记录数据。 AAI/PARSTAT4000
电化学池选件
Corrosion Cell Kit 腐蚀电解池 K0047
Corrosion Flat Cell 平板电解池 K0235
Micro-Cell Kit 微电解池 K0264
Analytical Cell Kit 分析电解池 RDE0018
Tait Cell 涂层评价池 K0307
辅助附件
石英晶体微天平 QCM922
旋转盘电极 616
旋转环盘电极 636

 

腐蚀

1) Jae-Won Park, Chul-Ku Lee, Mechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 13 (2012) 2209-2214 , Seoul National University of Science and Technology, Seoul

 http://link.springer.com/article/10.1007/s12541-012-0293-y#page-1

2) G. Bolat, D. Mareci, Investigation of the electrochemical behavior of TiMo alloys in simulated physiological solutions, Electrochimica Acta, 113 (2013) 470-480, University of La Laguna, Spain

http://www.sciencedirect.com/science/article/pii/S0013468613018793

3) A.Kazek-Kęsik, G.Dercz, Surface treatment of a Ti6Al7Nb alloy by plasma electrolytic oxidation in a TCP suspension, Archives of Civil and Mechanical Engineering, Silesian University of Technology, Poland

 http://www.sciencedirect.com/science/article/pii/S1644966513001404

4) A. C. Bărbînţă, D. Mareci, The estimation of corrosion behavior of new TiNbTaZr alloys for biomedical applications, Materials and Corrosion, The “Gheorghe Asachi” Technical University of Iasi, Iasi, (Romania)

http://onlinelibrary.wiley.com/doi/10.1002/maco.201307294/abstract;jsessionid=D2352F625DD21AB4B03C23CAC01C8AF7.f03t03?deniedAccessCustomisedMessage=&userIsAuthenticated=false

5) L. A. Dragan-Raileanu, R. Chelariu, Electrochemical behavior of new experimental TiNbZrAl      alloys for dental applications, Materials and Corrosion,Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, Romania

http://onlinelibrary.wiley.com/doi/10.1002/maco.201307126/abstractdeniedAccessCustomisedMessage=&userIsAuthenticated=false

6) Georgiana Bolata, Javier Izquierdo, Electrochemical characterization of ZrTi alloys for biomedical applications. Part 2: The effect of thermal oxidation, Electrochimica Acta, 102 (2013) 432-439, Faculty of Chemical Engineering and Environmental Protection, Romania

http://www.sciencedirect.com/science/article/pii/S0013468613010165

7) Jae-Won Park, Chul-Ku LeeMechanical properties and sensitization on clad steel welding design, International Journal of Precision Engineering and Manufacturing, 14 (2014) 1939-1945, Seoul National University of Science and Technology, Seoul

http://link.springer.com/article/10.1007/s12541-013-0263-z#page-1

8) Hassan H. Elsentriecy, Huimin Luo, Effects of pretreatment and process temperature of a conversion coating produced by an aprotic ammonium-phosphate ionic liquid on magnesium corrosion protection, Electrochimica Acta, 123(2014) 58-63, Oak Ridge National Laboratory, USA

http://www.sciencedirect.com/science/article/pii/S001346861400019X

9) L. Guan, B. Zhang, The reliability of electrochemical noise and current transients characterizing metastable pitting of Al–Mg–Si microelectrodes, Corrosion Science, 80 (2014)1–6, Institute of Metal Research, Chinese Academy of Sciences, China

http://www.sciencedirect.com/science/article/pii/S0010938X13004903

10) Yaya Li,   Zhenzhen Yang, Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings , Journal of Materials Chemistry A, University of Shanghai for Science and Technology, China

http://pubs.rsc.org/en/content/articlelanding/ 2014/ta/c4ta02262a#!divAbstract

储能

11) Ting-Feng Yi, Bin Chen, Enhanced rate performance of molybdenum-doped spinel LiNi0.5Mn1.5O4 cathode materials for lithium ion battery, Journal of Power Sources,  247(2014)778–785, Anhui University of Technology, Maanshan, People's Republic of China

 http://www.sciencedirect.com/science/article/pii/S0378775313015231

12) Li Zhao, Wenbo Yue, Synthesis of graphene-encapsulated mesoporous In2O3 with different particle size for high-performance lithium storage,Electrochimica Acta, 116 (2014) 31–38, Beijing Normal University, Beijing 100875, P. R. China

http://www.sciencedirect.com/science/article/pii/S0013468613021919

13) Wenbo Yue,  Shuhua Jiang, Sandwich-structural graphene-based metal oxides as anode materials for lithium-ion batteries, Journal of Materials Chemistry A, 1 (2013) 6928- 6933Beijing Normal University, Beijing 100875, P. R. China

http://pubs.rsc.org/en/content/articlelanding/2013/ta/c3ta11012e#!divAbstract

14) Wenbo Yue, Shanshan Tao, Carbon-coated graphene–Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries, Carbon, 65 (2013) 97–104, Beijing Normal University, Beijing 100875, P. R. China

http://www.sciencedirect.com/science/article/pii/S0008622313007653

15) Sheng Yang, Xiaojing Yang, Graphene-Based Mesoporous SnO2 with Enhanced Electrochemical Performance for Lithium-Ion Batteries, Advanced Functional Materials, 23 (2013) 3570-3576, Beijing Normal University, Beijing 100875, P. R. China

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201203286/abstract?deniedAccessCustomisedMessage=&userIsAuthenticated=false

16) Xinghua Guo, Keqin Du, Application of a composite electrolyte in a solid-acid fuel cell system: A micro-arc oxidation alumina support filled with CsH2PO4, International Journal of Hydrogen Energy, 36 (2013) 16387–16393, Institute of Metal Research, Chinese Academy of Science, Shenyang, China

http://www.sciencedirect.com/science/article/pii/S0360319913023756

17) Zhengfu Tong, Zhenghua Su, In situ prepared Cu2ZnSnS4 ultrathin film counter electrode in dye-sensitized solar cells, Materials Letters,121 (2014) 241–243, Central South University, Changsha 410083, China

http://www.sciencedirect.com/science/article/pii/S0167577X14001529

18) York R. Smith, Biplab Sarma, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting, International Journal of Hydrogen Energy, 38 (2013) 2062–2069, University of Utah, USA

http://www.sciencedirect.com/science/article/pii/S0360319912024913

19) Yao Xiao, Qing Lv, Preparation of Pt hollow nanotubes with adjustable diameters for methanol electro-oxidation, RSC Advances., 2014,4, 21176-21179, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China

http://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra02568g#!divAbstract

纳米材料

20) Ting-Feng Yi, Shuang-Yuan Yang, Effect of temperature on lithium-ion intercalation kinetics of LiMn1.5Ni0.5O4-positive-electrode material, Ionics, 20 (2014) 309-314, Anhui University of Technology, PRC

http://link.springer.com/article/10.1007/s11581-013-0975-1#page-1

21) Maciej Sowa, Alicja Kazek-Kęsik, Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 ( 2013) 627–636, Silesian University of Technology, Poland

http://www.sciencedirect.com/science/article/pii/S0013468613020021

22) York R. Smith, Biplab Sarma, Light-Assisted Anodized TiO2 Nanotube Arrays, ACS Appl. Mater. Interfaces, 11 (2012) 5883–5890, University of Utah, USA

http://pubs.acs.org/doi/abs/10.1021/am301527g

23) Wojciech Simkaa, , , Maciej Sowa, Anodic oxidation of zirconium in silicate solutions

,Electrochimica Acta, 104(2013)518-525, Silesian University of Technology, Poland

http://www.sciencedirect.com/science/article/pii/S0013468612017446

24) Zhaolin Chen, Hongtao Zhang, mbrane on the electrosorption performance of activated                  carbon based electrodes modules, Desalination and Water Treatment, 51 (2013) 16-18,                  Tsinghua University, Beijing

      http://www.tandfonline.com/doi/abs/10.1080/19443994.2012.749373

25) Venkata N.MadhiraPeng Ren, Synthesis and electronic properties of a pentafluoroethyl -            derivatized nickel pincer complex, Dalton Trans., 41(2012)7915-7919, University of Hawaii,             USA

       http://pubs.rsc.org/en/content/articlelanding/2012/dt/c2dt30131h#!divAbstract

26) Maciej Sowa, Alicja Kazek-Kęsik, Modification of niobium surfaces using plasma electrolytic          oxidation in silicate solutions, Journal of Solid State Electrochemistry, Silesian University of            Technology, Poland
      http://link.springer.com/article/10.1007/s10008-013-2341-7#page-1




上一个:ModuLab XM ECS

下一个:PARSTAT 3000A电化学工作站


华东地区(上海总部)

联系地址:上海外高桥富特东三路526号1幢二层

联系电话:021-58685111-AMT SI,4008353166转1

华北地区(北京)

联系地址:北京市朝阳区酒仙桥路10号京东方大厦二层西侧

联系电话:010-85262111-15, 4008353166转1

西北西南地区(成都)

联系地址:成都市锦悦西路160号高新孵化园9号楼F座10楼9-10号

联系电话:028-8675811-AMT SI,4008353166转1

华中华南地区(广州)

联系地址:广州市越秀区东风东路767号东宝大厦810室

联系电话:020-83634768-AMT SI,4008353166转1

北京维修中心

联系地址:北京市朝阳区酒仙桥路10号京东方大厦二层西侧

联系电话:010-85262111-12,186 0067 3523

投诉电话

联系地址:北京市朝阳区酒仙桥路10号京东方大厦二层西侧

联系电话:010-85262111-15,138 1746 0237

销售热线:
400 8353 166 -1

服务热线:
400 8353 199

邮箱:
amt.si.china@ametek.com